yields $\Delta H_{m}=6.19 \mathrm{cal} / \mathrm{g}$, whereas the calorimetric value of Giauque and Clayton ${ }^{17}$ is $6.15 \pm 0.05 \mathrm{cal} / \mathrm{g}$; the agreement is satisfactory if one considers that Eq. (4) combines extrapolations of the melting curve below $23 \mathrm{~kg} / \mathrm{cm}^{2}$ and of ΔV_{m} below $79 \mathrm{~kg} / \mathrm{cm}^{2}$.

D. Question of a Critical Point in Melting Curves

In a review article, Bridgman ${ }^{19}$ summarized the experimental and theoretical work done on the fusion process, pointing out that the question remained as to whether the melting curve: (1) ends in a critical point; (2) rises to a maximum temperature and then falls; (3) rises to an asymptotic temperature; or (4) rises indefinitely with increasing pressure and temperature. Bridgman concluded, from his measurements ${ }^{20}$ to $50000 \mathrm{~kg} / \mathrm{cm}^{2}$ of melting phenomena and of the volumetric behavior of liquid and solid phases, that Hypothesis (4) is valid. Certain assumptions applied to the temperature-perturbed Thomas-Fermi atomic model led Gilvarry ${ }^{21}$ to predict a melting curve with normal behavior ; i.e., with $d P / d T$ always positive and always

[^0]increasing with P. In addition, he showed that $\Delta H_{m} / \Delta V_{m}$ always has a positive pressure coefficient, which is consistent with the absence of a critical point.

Recently Ebert, ${ }^{3}$ combining Bridgman's data with analogies drawn from the vaporization process, showed that, for certain substances, ΔS_{m} and ΔV_{m} might extrapolate to zero at the same pressure, a criterion of a critical point. It should be pointed out, however, that ΔS_{m} was calculated from P_{m}, T_{m}, and ΔV_{m} by means of the Clapeyron equation. Then if $d P / d T$ remains finite, as required by the Simon melting equation, ΔV_{m} and ΔS_{m} must necessarily vanish at the same pressure. Since the Simon equation has been strengthened by several theoretical derivations, ${ }^{18,22-24}$ it is interesting to compute $P_{m}=18500 \mathrm{~kg} / \mathrm{cm}^{2}$ and $T_{m}=256^{\circ} \mathrm{K}$ from Eqs. (1) and (3) when $\Delta V_{m}=0$ for N_{2}. These values indicate that the vanishing of ΔV_{m} might occur within the range of experimental pressures.

V. ACKNOWLEDGMENTS

We wish to thank W. E. Keller for the use of his volume-manometer and Max Goldstein for assistance in fitting the data to equations.

[^1]
[^0]: ${ }^{19}$ P. W. Bridgman, Revs. Modern Phys. 18, 1 (1946).
 ${ }^{90}$ P. W. Bridgman, J. Chem. Phys. 9, 794 (1941); Proc. Am. Acad. Arts Sci. 74, 399 (1942).
 ${ }^{21}$ J. J. Gilvarry, Phys. Rev. 102, 317 (1956).

[^1]: ${ }^{23}$ J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc. (London) A170, 464 (1939).
 ${ }_{23}^{23}$ J. de Boer, Proc. Roy. Soc. (London) A215, 4 (1952).
 ${ }^{24}$ C. Domb, Phil. Mag. 42, 1316 (1951).

