yields $\Delta H_m = 6.19$ cal/g, whereas the calorimetric value of Giauque and Clayton¹⁷ is 6.15 ± 0.05 cal/g; the agreement is satisfactory if one considers that Eq. (4) combines extrapolations of the melting curve below 23 kg/cm² and of ΔV_m below 79 kg/cm².

1145

D. Question of a Critical Point in Melting Curves

In a review article, Bridgman¹⁹ summarized the experimental and theoretical work done on the fusion process, pointing out that the question remained as to whether the melting curve: (1) ends in a critical point; (2) rises to a maximum temperature and then falls; (3) rises to an asymptotic temperature; or (4) rises indefinitely with increasing pressure and temperature. Bridgman concluded, from his measurements²⁰ to 50 000 kg/cm² of melting phenomena and of the volumetric behavior of liquid and solid phases, that Hypothesis (4) is valid. Certain assumptions applied to the temperature-perturbed Thomas-Fermi atomic model led Gilvarry²¹ to predict a melting curve with normal behavior; i.e., with dP/dT always positive and always increasing with P. In addition, he showed that $\Delta H_m / \Delta V_m$ always has a positive pressure coefficient. which is consistent with the absence of a critical point.

Recently Ebert,3 combining Bridgman's data with analogies drawn from the vaporization process, showed that, for certain substances, ΔS_m and ΔV_m might extrapolate to zero at the same pressure, a criterion of a critical point. It should be pointed out, however, that ΔS_m was calculated from P_m , T_m , and ΔV_m by means of the Clapeyron equation. Then if dP/dT remains finite, as required by the Simon melting equation, ΔV_m and ΔS_m must necessarily vanish at the same pressure. Since the Simon equation has been strengthened by several theoretical derivations,^{16,22-24} it is interesting to compute $P_m = 18500 \text{ kg/cm}^2$ and $T_m = 256^{\circ}\text{K}$ from Eqs. (1) and (3) when $\Delta V_m = 0$ for N₂. These values indicate that the vanishing of ΔV_m might occur within the range of experimental pressures.

V. ACKNOWLEDGMENTS

We wish to thank W. E. Keller for the use of his volume-manometer and Max Goldstein for assistance in fitting the data to equations.

²² J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc. (London) A170, 464 (1939).
²³ J. de Boer, Proc. Roy. Soc. (London) A215, 4 (1952).
²⁴ C. Domb, Phil. Mag. 42, 1316 (1951).

 ¹⁹ P. W. Bridgman, Revs. Modern Phys. 18, 1 (1946).
²⁰ P. W. Bridgman, J. Chem. Phys. 9, 794 (1941); Proc. Am. Acad. Arts Sci. 74, 399 (1942).

²¹ J. J. Gilvarry, Phys. Rev. 102, 317 (1956).